

XVIII CICURV - Congresso de Iniciação Científica da Universidade de Rio Verde

Influência de microrganismos e bioestimulantes nos parâmetros fisiológicos de plantas de soja submetida ao déficit hídrico

Pedro Henryque Fernandes Cabral¹, Wendson Soares da Silva Cavalcante², José Gomes Martins Neto³, Vytor de Castro Matias⁴, Yan Carlos Moraes Magalhães⁵, Nelmício Furtado da Silva⁶

- ¹ Graduando em Agronomia, Universidade de Rio Verde, PIBIB/UniRV.
- ² Mestrando em Produção Vegetal, UniRV.
- ³ Graduando em Agronomia, Universidade de Rio Verde.
- ⁴ Graduando em Agronomia, Universidade de Rio Verde.
- ⁵ Graduando em Agronomia, Universidade de Rio Verde,
- ⁶ Professor Dr. Universidade de Rio Verde, Faculdade de agronomia, Rio Verde. E-mail: nelmicio@unirv.edu.br.

Reitor:

Prof. Dr. Alberto Barella Netto

Pró-Reitor de Pesquisa e Inovação:

Prof. Dr. Carlos César E. de Menezes

Editor Geral:

Prof. Dra. Andrea Sayuri Silveira Dias Terada

Editores de Seção:

Profa. Dra. Ana Paula Fontana Prof. Dr. Hidelberto Matos Silva Prof. Dr. Fábio Henrique Baia Pra. Dra. Muriel Amaral Jacob Prof. Dr. Matheus de Freitas Souza Prof. Dr. Warley Augusto Pereira

Fomento:

Programa PIBIC/PIVIC UniRV/CNPq 2023-2024

Resumo: Objetivou-se com presente estudo avaliar a resposta de plantas de soja a aplicação microrganismos substâncias bioestimulantes em condições de déficit hídrico. O ensaio foi realizado em casa-de-vegetação localizada na Fazenda Fontes do Saber pertencente a Universidade de Rio Verde -UniRV entre os meses de outubro e novembro de 2023. Foi utilizado um delineamento inteiramente casualizado (DIC), em esquema fatorial de 4 x 4, sendo 4 tratamentos de sementes (Microrganismos, bioestimulantes, microrganismos + bioestimulantes e testemunha) e 4 níveis de reposição hídrica (25%, 50%, 75% e 100% da Capacidade de campo - CC), com 5 repetições, totalizando 16 tratamentos e 80 unidades experimentais (Vasos). Os tratamentos aplicações de microrganismos previstos receberam uma dose de produtos comerciais no de sementes contendo tratamento microrganismos (Bacillus aryabhattai, Bacillus subtilis Trichoderma asperellum). aplicações tratamentos previstos de bioestimulante receberam uma dose de uma formulação de bioestimulante via tratamento de sementes à base de extrato de (Ascophyllum nodusum + Kappaphycus alvarezii) + complexo de aminoácidos contendo (Prolina + arginina) na dose de 2 mL kg-1 de semente. Foram determinados os índices fisiológicos (índice Falker® de clorofila a (Cl a), índice Falker® de clorofila b (Cl b), índice Falker® de clorofila total (Cl t) e potencial hídrico (Ψw)). Os dados coletados foram submetidos a análise estatística, incluindo análise de variância pelo teste F (p<0,05) e testes de média Tukey (p<0,05) para dados qualitativos, bem como análise de regressão (p<0,05) para dados quantitativos, utilizando o software estatístico SISVAR®.

XVIII CICURV - Congresso de Iniciação Científica da Universidade de Rio Verde

Palavras-Chave: Bacillus aryabhattai. Bacillus subtilis. Trichoderma asperellum. Ascophyllum nodusum. Kappaphycus alvarezii.

Influence of microorganisms and biostimulants on the biometric parameters of soybean plants subjected to water deficit

Abstract: The objective of this study was to evaluate the response of soybean plants to the application of microorganisms and biostimulant substances under water deficit conditions. The trial was carried out in a greenhouse located at Fazenda Fontes do Saber belonging to the University of Rio Verde – UniRV between the months of October and November 2023. A completely randomized design (DIC) was used. in a 4 x factorial scheme. 4, with 4 seed treatments (Microorganisms, biostimulants, microorganisms + biostimulants and control) and 4 levels of water replacement (25%, 50%, 75% and 100% of Field Capacity - CC), with 5 replications, totaling 16 treatments and 80 experimental units (Vats). The treatments provided for applications of microorganisms received a dose of commercial products in the treatment of seeds containing microorganisms (Bacillus aryabhattai, Bacillus subtilis and Trichoderma asperellum). The treatments provided for biostimulant applications received a dose of a biostimulant formulation via seed treatment based on algae extract (Ascophyllum nodusum + Kappaphycus alvarezii) + amino acid complex containing (Proline + arginine) at a dose of 2 mL kg-1 of seed. Physiological indices were determined (Falker® index of chlorophyll a (Cl a), Falker® index of chlorophyll b (Cl b), Falker® index of total chlorophyll (Cl t) and water potential (Ψw)). The collected data were subjected to statistical analysis, including analysis of variance using the F test (p<0.05) and Tukey mean tests (p<0.05) for qualitative data, as well as regression analysis (p<0.05) for quantitative data, using the SISVAR® statistical software.

Keywords: Bacillus aryabhattai. Bacillus subtilis. Trichoderma asperellum. Ascophyllum nodusum. Kappaphycus alvarezii.

Introdução

Todas as espécies vegetais manifestam diversas alterações morfológicas, fisiológicas e metabólicas quando submetidas ao estresse hídrico. Todavia, o fechamento estomático é uma das respostas mais importantes que as plantas apresentam para evitar o excesso de transpiração. Essa estratégia tem um preço, uma vez que leva a reduções nas atividades fotossintéticas e da produção de fotoassimilados, acúmulo de espécies reativas de oxigênio (EROs) e a alteração das relações hídricas das plantas (Zhong et al., 2017).

Estudos mostraram inúmeros efeitos positivos do extrato de *Kappaphycus alvarezii* na tolerância das plantas a estresses (Martynenko et al., 2016; Cavalcante et al., 2020). Shukla et al. (2019) e Cavalcante et al. (2020) avaliando o potencial de um extrato de *Ascophyllum nodosum* no estresse hídrico em soja, notaram que plantas que receberam aplicação do extrato de algas demonstraram uma melhor adaptabilidade para mitigar as condições de seca e apresentaram um incremento no potencial hídrico 50% maior quando expostas a condições de seca, quando comparadas às não tratadas.

No solo, as plantas interagem com os microrganismos ali presente oferecendo um ambiente bastante específico para o desenvolvimento e crescimento natural de comunidades microbianas. Os microrganismos promotores de crescimento vegetal, são bactérias e fungos que, em associação com as plantas, são capazes de estimular o crescimento, através do seu efeito biofertilizante e bioestimulante, os quais podem promover uma maior tolerância a estresses bióticos e abióticos (Porto et al., 2022).

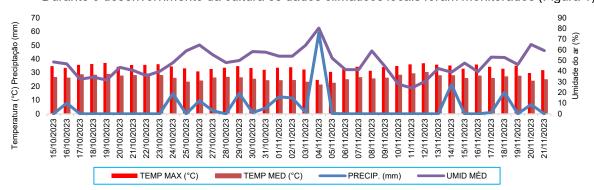
Dentre os diversos microrganismos que tem sido caracterizado como capazes de incrementar o crescimento vegetal, destacam-se as bactérias do gênero *Bacillus* e fungos do gênero *Trichoderma*, os quais apresentam a capacidade de fixação e solubilização de nutrientes essenciais e fornecem metabólitos envolvidos no mecanismo de tolerância aos estresses abióticos (Chagas et al., 2017).

Destacam-se os principais grupos de microrganismos com potencial utilização na cultura da soja: *Bacillus aryabhattai, Bacillus subtilis, Trichoderma asperellum*. Os mecanismos de tolerância à seca induzidos por rizobactérias promotoras de crescimento de plantas (RPCP) capazes de produzir

XVIII CICURV - Congresso de Iniciação Científica da Universidade de Rio Verde

fitohormônios que influenciam na condutância estomática, crescimento e arquitetura das raízes. A atividade da enzima ACC deaminase bacteriana impacta a via de biossíntese do etileno, estimulando o crescimento radicular. A produção de exopolissacarídeos (EPS) e formação de biofilmes na superfície das raízes protegem as plantas do dessecamento, aumentando a absorção de água e nutrientes. Os osmólitos (e.g. prolina, betaína, ectoína e trealose) sintetizados protegem e estabilizam a membrana celular em condições de estresse hídrico, enquanto as enzimas antioxidantes (e.g. APX, SOD e CAT) combatem a produção de radicais livres.

Diante do exposto, partindo da hipótese que o uso de substâncias biofertilizantes e microrganismos pode mitigar os efeitos do déficit hídrico em plantas de soja. Objetivou-se com presente estudo avaliar a resposta de plantas de soja a aplicação de substâncias biofertilizantes e microrganismos em condições de déficit hídrico.


Material e Métodos

Para o manejo do déficit hídrico, em plantas de soja via aplicação de bioestimulante, foi realizado um ensaio em casa de vegetação localizada na Fazenda Fontes do Saber da Universidade de Rio Verde – UniRV entre os meses de outubro e novembro de 2023.

O solo utilizado nos vasos foi coletado na área experimental da faculdade em área de cultivo na camada de 0-20 cm e classificado como LATOSSOLO VERMELHO Distroférrico (LVdf), típico, textura muito argilosa, fase cerrado.

Antes da instalação do experimento nos vasos foi realizada amostragem do solo, para a caracterização físico-química. O solo foi peneirado para retirada dos torrões e foram colocados um total de 5 kg de solo (Terra fina seca ao ar - TFSA) em cada vaso, de 5L e preenchidos com solo.

Durante o desenvolvimento da cultura os dados climáticos locais foram monitorados (Figura 1).

Fonte: Estação automática Normal INMET - Rio Verde - GO

Figura 1. Dados diários de temperatura média, umidade média e precipitação no período decorrente do experimento, safra 2023-24, Rio Verde – GO

A adubação de plantio foi realizada no vaso e incorporada no solo na camada de 0-10 cm de profundidade. A quantidade de fertilizantes utilizada foi correspondente a 400 kg ha⁻¹ do formulado 05-25-15, baseado na análise de solo. Para o plantio foi utilizada a cultivar 97R50 IPRO marca Pioneer[®], semeada em 15 de outubro de 2023.

A Emergência das plântulas ocorreu aos 5 dias após o plantio. A partir do sétimo dia após o plantio, foram impostas as lâminas de reposição hídrica para começar a estudar os resultados, logo nos estágios iniciais da cultura.

Foi utilizado um delineamento inteiramente casualizado (DIC), em esquema fatorial de 4 x 4, sendo 4 tratamentos de sementes (Microrganismos, bioestimulantes, microrganismos + bioestimulantes e testemunha) e 4 níveis de reposição hídrica (25%, 50%, 75% e 100% da Capacidade de campo – CC), com 5 repetições, totalizando 16 tratamentos e 80 unidades experimentais (Vasos).

Os tratamentos previstos de aplicações de microrganismos receberam uma dose de produtos comerciais no tratamento de sementes contendo os microrganismos (*Bacillus aryabhattai, Bacillus subtilis* e *Trichoderma asperellum*), onde todos foram misturados, seguindo as recomendações da empresa e da bula. Todos os tratamentos receberam aplicação de inoculante comercial Nodumax[®]

XVIII CICURV - Congresso de Iniciação Científica da Universidade de Rio Verde

líquido à base de (*Bradyrhizobium japonicum* na concentração de 7,2 x 10° e dose de 2 mL/ kg de semente).

Os produtos comerciais utilizados foram: Arid[®] à base de (*Bacillus aryabhattai* na dose de 2 mL/kg de semente); Bactrix[®] à base de (*Bacillus subtilis* na dose de 2 mL/kg de semente); e Triene[®] à base de (*Trichoderma asperellum* na dose de 2 mL/kg de semente).

A capacidade de retenção de água do solo (capacidade de campo - CC) foi determinada através da pesagem de todos os vasos com o solo seco e após o encharcamento e posterior drenagem. O controle da quantidade de água a ser aplicada em cada tratamento foi realizado através da pesagem diária dos vasos, utilizando balança eletrônica portátil, e a água perdida por evapotranspiração era reposta até que o peso do vaso atingisse o valor previamente determinado (método gravimétrico). Quando as plântulas de soja estavam com 7 dias após o plantio (DAP) iniciou-se a aplicação dos tratamentos de reposição hídrica.

Os dados de lâmina de reposição hídrica aplicado durante o ensaio estão descritos na Tabela 1.

Tabela 1. Balanço da reposição hídrica em função dos tratamentos, safra 2023-24, Rio Verde – GO

RH -	CC				Lâmina total		
	L	%	L dia ⁻¹	L mês ⁻¹	mm dia ⁻¹	mm mês ⁻¹	mm ciclo ⁻¹
25%	0,35	7	0,125	9	2,5	75	250
50%	0,70	14	0,250	18	5,0	150	500
75%	1,05	21	0,375	27	7,5	225	750
100%	1,40	28	0,500	36	10,0	300	1000
Média	0,85	17,5	0,312	22,5	6,25	187,5	625

RH – Reposição hídrica e CC – Capacidade de campo. Fonte: autoria própria.

A coleta de dados fisiológicos ocorreu com 30 dias após o plantio (DAP). Foram determinadas as seguintes variáveis: índice Falker® de clorofila a (Cl a), índice Falker® de clorofila b (Cl b), índice Falker® de clorofila total (Cl t) e potencial hídrico (Ψw). Foram amostradas 2 plantas (Duplicata), por parâmetro fisiológico. Para determinar o índice Falker® de clorofila, foi utilizado um clorofilômetro da marca Falker® (Porto Alegre, Brasil) do tipo ClorofiLOG1030®, modelo CFL1030. O potencial hídrico (Ψw), foi medido após o início do tratamento por meio de uma câmara de pressão do tipo Scholander (Modelo 3005-1412, Soilmoisture Equipment Corp, Goleta – USA).

Os dados coletados foram submetidos a análise estatística, incluindo análise de variância e testes de média Tukey (p<0,05) para dados qualitativos, bem como, análise de regressão para dados quantitativos, com um nível de significância de p<0,05, usando o software estatístico SISVAR[®].

Resultados e Discussão

No resumo da análise de variância para as variáveis fisiológicas índice Falker® de clorofila *a*, índice Falker® de clorofila *b*, índice Falker® de clorofila total e potencial hídrico, em relação a fonte de variação, observa-se que houve efeito significativo para a variável potencial hídrico em função dos tratamentos, já para a fonte de variação reposição hídrica houve efeito significativo para todas as variáveis fisiológicas (Tabela 2).

Este resultado sugere que o uso de bioestimulante a base de microrganismos (*Bacillus aryabhattai* + *Bacillus subtilis* + *Trichoderma asperellum*) e biofertilizante a base de extrato de algas (*Ascophyllum nodusum* + *Kappaphycus alvarezii*) + Complexo de aminoácidos (Prolina + Arginina), está associado ao crescimento de plantas de soja. Os diferentes níveis de reposição hídrica influenciaram significativamente no crescimento de plantas de soja em relação ao índice Falker® de clorofila *a*, índice Falker® de clorofila *b*, índice Falker® de clorofila total e potencial hídrico.

XVIII CICURV - Congresso de Iniciação Científica da Universidade de Rio Verde

Tabela 2. Resumo da análise de variância para as variáveis índice Falker® de clorofila *a* (Cl *a*), índice Falker® de clorofila *b* (Cl *b*), índice Falker® de clorofila total (Cl t) e potencial hídrico (Ψw), em função da fonte de variação, Safra 2023-24, Rio Verde – GO

FV	CI	Quadrados médios					
ΓV	GL -	Cl a	Cl b	Cl t	Ψw		
TRAT	3	75,864167 ^{ns}	3,398333 ^{ns}	109,829833 ns	0,009117 **		
RH	3	151,562833 *	13,136667 **	250,728833 **	0,033197 **		
TRAT x RH	9	12,207833 ns	0,623444 ns	14,002611 ^{ns}	0,002096 ns		
REP	4	1,592688 ^{ns}	1,225750 ns	1,453625 ns	0,000558 ns		
Resíduo	60	52,451621	2,812483	60,632425	0,001295		
CV (%)		22,78	21,02	19,58	12,81		

ns não significativo e *; ** significativo respectivamente a 5 e 1% de probabilidade segundo teste F. FV – fonte de variação; GL – Grau de Liberdade; e CV – Coeficiente de Variação; REP – Repetição; RH – Reposição hídrica e TRAT – Bioestimulante a base de microrganismos (*Bacillus aryabhattai + Bacillus subtilis + Trichoderma asperellum*) e biofertilizante a base de extrato de algas (*Ascophyllum nodusum + Kappaphycus alvarezii*) + complexo de aminoácidos (Prolina + arginina). Fonte: autoria própria.

No teste de média para as para a variável potencial hídrico observa-se que os tratamentos contendo (Micro+Bio) ou seja, uso de bioestimulante a base de microrganismos (*Bacillus aryabhattai* + *Bacillus subtilis* + *Trichoderma asperellum*) e biofertilizante a base de extrato de algas (*Ascophyllum nodusum* + *Kappaphycus alvarezii*) + Complexo de aminoácidos (Prolina + Arginina), apresentou as melhores médias, porém não difere do tratamento contendo (Bio), ou seja, biofertilizante a base de extrato de algas (*Ascophyllum nodusum* + *Kappaphycus alvarezii*) + Complexo de aminoácidos (Prolina + Arginina) (Tabela 6).

Tabela 3. Teste de média para as variáveis índice Falker[®] de clorofila *a* (Cl *a*), índice Falker[®] de clorofila *b* (Cl *b*), índice Falker[®] de clorofila total (Cl t) e potencial hídrico (Ψw), em função dos tratamentos, Safra 2023-24, Rio Verde – GO

Trotomontos		Índice Falker®		Ψw
Tratamentos —	Cl a	Cl b	Cl t	MPa
Micro	31,18	7,75	38,93	- 0,2890 ab
Bio	32,99	8,38	41,38	- 0,2620 a
Micro+Bio	33,67	8,26	41,94	- 0,2655 a
Testemunha	29,34	7.52	36,86	- 0.3075 b

Médias seguidas de mesma letra nas colunas não diferem entre si segundo teste Tukey (p<0,05). Micro – Bioestumulante a base de microrganismos (Bacillus aryabhattai + Bacillus subtilis + Trichoderma asperellum; Bio – Biofertilizante a base de extrato de algas (Ascophyllum nodusum + Kappaphycus alvarezii) + complexo de aminoácidos (Prolina + arginina). Fonte: autoria própria.

Resultados que corroboram com os encontrados neste presente trabalho foram estudados por Morais (2020), em que este avaliou as respostas da cultura da soja, em relação ao estresse hídrico e aplicação de bioestimulantes, verificando também a relação entre a presença e a ausência do bioestimulante e a condição hídrica do solo, sendo que a presença de bioestimulante mais reposição hídrica adequada resultou em uma maior produtividade para a cultura da soja, bem como, um aumento da formação e fixação dos legumes nas plantas, aumentando assim, a quantidade de grãos por planta e consequentemente sua produtividade.

Conclusão

O uso de microrganismos (*Bacillus aryabhattai* + *Bacillus subtilis* + *Trichoderma asperellum*) associado ao extrato de algas (*Ascophyllum nodusum* + *Kappaphycus alvarezii*) + complexo de aminoácidos promoveu incrementos na variável fisiológica de potencial hídrico.

A lâmina de reposição hídrica de 100% da capacidade de campo promoveu os maiores incrementos médios (28,53%) para variáveis fisiológicas de clorofila *a*, índice Falker[®] de clorofila *b*, índice Falker[®] de clorofila total e potencial hídrico.

Os resultados das variáveis fisiológicas indicam que a aplicação de microrganismos combinados a substâncias bioestimulantes como extrato de algas e aminoácidos em plantas de soja pode mitigar as perdas em condições de déficit hídrico.

XVIII CICURV - Congresso de Iniciação Científica da Universidade de Rio Verde

Agradecimentos

Os autores agradecem às instituições que financiaram a execução do trabalho (CNPq, FAPs, CAPES, UniRV-PIBIC.

Referências Bibliográficas

CAVALCANTE, W. S.; DA SILVA, N. F.; TEIXEIRA, M. B.; CABRAL FILHO, F. R.; NASCIMENTO, P. E. R.; CORRÊA, F. R. Eficiência dos bioestimulantes no manejo do déficit hídrico na cultura da soja. **IRRIGA**, v. 25, n. 4, p. 754-763, 2020.

CHAGAS, L. F. B.; JUNIOR, A. F. C.; SOARES, L. P.; FIDELIS, R. R. Trichoderma na promoção do crescimento vegetal. **Revista de Agricultura Neotropical**, v. 4, n. 3, p. 97-102, 2017.

MARTYNENKO, A.; SHOTTON, K.; ASTATKIE, T.; PETRASH, G.; FOWLER, C.; NEILY, W.; CRITCHLEY, A.T. Thermal imaging of soybean response to drought stress: the effect of Ascophyllum nodosum seaweed extract. **Springer Plus**, v. 5, n. 1, p. 1393, 2016.

MORAIS, T. B. Respostas morfo-fisiológicas da soja submetida à estresse hídrico e aplicação de bioestimulante. Tese (Doutorado) – Universidade Federal de Santa Maria, 71p, 2020.

PITER, J., BROWN, A., JOHNSON, M. SAM, L. Microbial Inoculation Strengthens Plant Structural Integrity: Insights from Bacillus spp. and Trichoderma asperellum. **Plant Science Journal**, 35(2), 210-225, 2020.

PORTO, E. M. V.; TEIXEIRA, F. A.; FRIES, D. D.; JARDIM, R. R.; AMARO, H. T. R.; DOS SANTOS FILHO, J. R.; VIEIRA, T. M. Microrganismos promotores de crescimento de plantas como mitigadores do estresse hídrico em pastagens: uma revisão narrativa **Research, Society and Development**, v. 11, n. 11, p. e514111134029-e514111134029, 2022.

SHUKLA, P. S.; MANTIN, E. G.; ADIL, M.; BAJPAI, S.; CRITCHLEY, A. T.; PRITHIVIRAJ, B. Ascophyllum nodosum-based biostimulants: Sustainable applications in agriculture for the stimulation of plant growth, stress tolerance, and disease management. **Frontiers in plant science**, v. 10, n. 1, p. 655, 2019.

ZHONG, C.; CAO, X.; HU, J.; ZHU, L.; ZHANG, J.; HUANG, J.; JIN, Q. Nitrogen metabolism in adaptation of photosynthesis to water stress in rice grown under different nitrogen levels. **Frontiers in Plant** Science, v. 8, n. 1, p. 1079, 2017.